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Motivation
Large language models (LLMs):

Capable of powerful reasoning and generation
Prone to errors and hallucinations

Formal proof assistants (e.g., Lean):
Verify mathematical correctness
Not generative; requires painstaking meticulous detail

LLM-based formal proving is gaining attention
Yet, a large gap remains between informal
reasoning and formal proving

Our Goal: Bridge this gap

Motivation Our Contributions
Coordination of informal and formal reasoning
with Lean feedback
Auxiliary lemma generation for strategy discovery
Helps discover strategies even when the solution path
is not apparent at first

State-of-the-art theorem-proving performance
among methods using small language models
Efficiency in inference-time cost
Much smaller sample budget than prior work
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Prover Agent (Ours)
DeepSeek-Prover-V2
Kimina-Prover-Preview-Distill
STP
Leanabell-Prover-GD-RL
Goedel-Prover-SFT
BFS-Prover
InternLM2.5-StepProver + BFS + CG

Comparison of theorem-proving performance
on the MiniF2F benchmark

Prover Agent
Direct proving (Initial attempt)

Problem

If direct
proving fails Informal LLM AutoFormalizer

Lemma Generation
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Formal Proof Construction

Iterative Refinement

Proved
Lemmas

Prover Model Lean

Final Proof Synthesis

Iterative Refinement

Formal
Proof

Three Key Components of Prover Agent
1 2 3Lemma Generation via Informal Reasoning

Generate auxiliary lemmas
Specific cases
Potentially useful intermediate facts

Not limited to subgoals of predefined
proof sketch
Key difference from prior approachs

e.g. Problem: Show that n2 + an is even
(n ∈ N, a: even)Consider n2 + n or n2 + 3n

Help discover overall proof strategy
Mirrors how human mathematicians
typically work

Formal Proof Construction Guided by
Informal Reasoning and Iterative Feedback

Leverage the stronger mathematical ability
of the informal LLM
Construct a formal proof using an
informal proof as a guide
Iteratively refine the proof based on
Lean feedback
Can be seen as self-correction through in-context
learning
Akin to how humans improve their understanding
based on feedback

Final Proof Synthesis Guided by
Verified Lemmas and Iterative Feedback

Consider overall proof using the lemmas
Use only the verified lemmas

Allows bottom-up strategy construction
even when the full plan isn’t initially clear
Prior work: top-down approach requiring the
full plan upfront

Iteratively refine the proof based on
Lean feedback

Experiments
Experimental Setup

Informal LLM: DeepSeek-R1-0528-Qwen3-8B
Formal prover model: DeepSeek-Prover-V2-7B
AutoFormalizer: Kimina-Autoformalizer-7B

Comparison of Formal Theorem-Proving Performance
Prover System Method Model

Size
Sample
Budget

miniF2F
test

Large Language Models

Kimina-Prover-Preview (Wang et al., 2025) Whole-proof 72B
1 52.9%
32 68.9%

1024 77.9%
8192 80.7%

DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025) Whole-proof 671B
1 59.5%
32 73.8%

1024 76.7%
8192 78.3%

DeepSeek-Prover-V2 (CoT) (Ren et al., 2025) Whole-proof 671B
1 61.9%
32 82.4%

1024 86.6%
8192 88.9%

Small Language Models
DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) Tree search 7B 32× 16× 400 63.5%
InternLM2.5-StepProver + BFS + CG (Wu et al., 2024) Tree search 7B 256× 32× 600 65.9%
HunyuanProver v16 + BFS + DC (Li et al., 2025) Tree search 7B 600× 8× 400 68.4%
BFS-Prover (Xin et al., 2025b) Tree search 7B 2048× 2× 600 70.8%
Leanabell-Prover-GD-RL (Zhang et al., 2025) Whole-proof 7B 128 61.1%
Goedel-Prover-SFT (Lin et al., 2025) Whole-proof 7B 25600 64.7%
STP (Dong & Ma, 2025) Whole-proof 7B 25600 67.6%

Kimina-Prover-Preview-Distill (Wang et al., 2025) Whole-proof 7B
1 52.5%
32 63.1%

1024 70.8%

DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025) Whole-proof 7B
1 55.5%
32 68.0%

1024 73.2%
8192 75.0%

DeepSeek-Prover-V2 (CoT) (Ren et al., 2025) Whole-proof 7B
1 58.6%
32 75.6%

1024 79.9%
8192 82.0%

Prover Agent (Ours)
(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

Agent 8B
1 61.5%

100 80.7%
400 84.0%
2000 86.1%

State-of-the-art performance among methods using SLMs
High success rate under low sample budget
Better performance than prior work through coordination

Performance on Olympiad-Level Problems
Olympiad MATH Custom

Model
Size

Sample
Budget IMO AIME AMC Sum Algebra

Number
Theory Sum Algebra

Number
Theory Induction Sum

Number of Problems 20 15 45 80 70 60 130 18 8 8 34

Prover Agent (Ours)
(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B
1 40.0 53.3 62.2 55.0 71.4 60.0 66.2 55.6 75.0 50.0 58.8

100 70.0 80.0 82.2 78.8 82.9 88.3 85.4 66.7 75.0 62.5 67.6
400 80.0 80.0 88.9 85.0 84.3 91.7 87.7 66.7 75.0 62.5 67.6
2000 80.0 80.0 91.1 86.3 85.7 91.7 88.5 72.2 87.5 75.0 76.5

DeepSeek-Prover-V2 (Ren et al., 2025) 671B 8192 50.0 93.3 77.8 73.8 100.0 96.7 98.5 83.3 87.5 100.0 88.2

Show strong performance on Olympiad-level problems
Suggest that coordination with informal reasoning may be the key
Olympiad-level problems require a high degree of mathematical reasoning

Consistent gap in MATH and Custom
Suggests that model size and sample budget may play a more significant
role here
Prover model also possesses a certain level of mathematical reasoning ability

Case Study: Success with Lemma-Guided Proofs
Problem:

1 theorem induction_nfactltnexpnm1ngt3
2 (n : N)
3 (h0 : 3 ≤ n) :
4 (n)! < nˆ(n - 1) := by sorry

1 theorem base_case_3 : (3 : N)! < 3ˆ(3 - 1) := by
2 have h_main : (3 : N)! < 3ˆ(3 - 1) := by
3 -- Calculate the factorial and the power step-by-step
4 norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
5 -- Use ‘decide‘ to confirm the inequality
6 <;> decide
7 exact h_main

1 theorem exponent_inequality {n : N} (hn : 2 ≤ n) :
2 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
3 have h_main : nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
4 have h0 : n - 1 + 1 = n := by
5 omega
6 have h1 : n ≥ 2 := by omega
7 have h2 : n - 1 ≥ 1 := by omega
8 have h3 : n < n + 1 := by omega
9 -- Use the fact that if a < b and n > 0, then aˆn <

bˆn
10 exact calc
11 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
12 -- Apply the lemma that if a < b and n > 0, then

aˆn < bˆn
13 exact Nat.pow_lt_pow_of_lt_left h3 (by omega)
14 _ = (n + 1)ˆ(n - 1) := by rfl
15 exact h_main
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Generated lemmas:

1 theorem induction_nfactltnexpnm1ngt3
2 (n : N)
3 (h0 : 3 ≤ n) :
4 (n)! < nˆ(n - 1) := by sorry

1 theorem base_case_3 : (3 : N)! < 3ˆ(3 - 1) := by
2 have h_main : (3 : N)! < 3ˆ(3 - 1) := by
3 -- Calculate the factorial and the power step-by-step
4 norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
5 -- Use ‘decide‘ to confirm the inequality
6 <;> decide
7 exact h_main

1 theorem exponent_inequality {n : N} (hn : 2 ≤ n) :
2 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
3 have h_main : nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
4 have h0 : n - 1 + 1 = n := by
5 omega
6 have h1 : n ≥ 2 := by omega
7 have h2 : n - 1 ≥ 1 := by omega
8 have h3 : n < n + 1 := by omega
9 -- Use the fact that if a < b and n > 0, then aˆn <

bˆn
10 exact calc
11 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
12 -- Apply the lemma that if a < b and n > 0, then

aˆn < bˆn
13 exact Nat.pow_lt_pow_of_lt_left h3 (by omega)
14 _ = (n + 1)ˆ(n - 1) := by rfl
15 exact h_main
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Reasoning trace w/ lemmas:
Consider the specific cases
for n = 3, 4, 5
Clearly identify the use of
mathematical induction

Employ proof techniques
used in the lemmas

Reasoning trace w/o lemmas:
Proof strategy is unclear
The details cannot be worked out sufficiently

The full reasoning trace can be found in the appendix of our paper.
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