Prover Agent: An Agent-based Framework for Formal Mathematical Proofs Kaito Baba¹, Chaoran Liu², Shuhei Kurita^{3 2}, Akiyoshi Sannai^{4 5 6 2 7} ¹The University of Tokyo, Tokyo, Japan ²Research and Development Center for Large Language Models, National Institute of Informatics, Tokyo, Japan ³National Institute of Informatics, Tokyo, Japan ⁴Kyoto University, Kyoto, Japan ⁵Shiga University, Shiga, Japan ⁶RIKEN Center for Advanced General Intelligence for Science Program, Kobe, Japan ⁷National Institute of Science Technology Policy (NISTEP), Tokyo, Japan #### Our paper #### Motivation - ► Large language models (LLMs): - ✓ Capable of powerful reasoning and generation - X Prone to errors and hallucinations - ► Formal proof assistants (e.g., Lean): - Verify mathematical correctness - X Not generative; requires painstaking meticulous detail - → LLM-based formal proving is gaining attention - XYet, a large gap remains between informal reasoning and formal proving Our Goal: Bridge this gap #### Our Contributions - Coordination of informal and formal reasoning with Lean feedback - ► Auxiliary lemma generation for strategy discovery - Helps discover strategies even when the solution path is not apparent at first - ➤ State-of-the-art theorem-proving performance among methods using small language models - ▶ Efficiency in inference-time cost - Much smaller sample budget than prior work Comparison of theorem-proving performance on the MiniF2F benchmark ### Prover Agent # Formal Proof Three Key Components of Prover Agent <</p> - Lemma Generation via Informal Reasoning - Generate auxiliary lemmas - Specific cases - Potentially useful intermediate facts - Not limited to subgoals of predefined proof sketch - Key difference from prior approachs - e.g. Problem: Show that $n^2 + an$ is even o Consider $n^2 + n$ or $n^2 + 3n$ ($n \in \mathbb{N}$, a: even) - → Help discover overall proof strategy - Mirrors how human mathematicians typically work - 2 Formal Proof Construction Guided by Informal Reasoning and Iterative Feedback - Leverage the stronger mathematical ability of the informal LLM - Construct a formal proof using an informal proof as a guide - Iteratively refine the proof based on Lean feedback - Can be seen as self-correction through in-context learning - Akin to how humans improve their understanding based on feedback - 3 Final Proof Synthesis Guided by Verified Lemmas and Iterative Feedback - Consider overall proof using the lemmasUse only the verified lemmas - ► Allows bottom-up strategy construction - even when the full plan isn't initially clear O Prior work: top-down approach requiring the - ► Iteratively refine the proof based on Lean feedback ### **Experiments** ### ♦ Experimental Setup ♦ - o Informal LLM: DeepSeek-R1-0528-Qwen3-8B - Formal prover model: DeepSeek-Prover-V2-7B - O AutoFormalizer: Kimina-Autoformalizer-7B - Performance on Olympiad-Level Problems ♦ | | | | | Olyn | ıpıad | | | MAIF | 1 | | Cus | tom | | |---|---------------|-------------------------|---|------------------------------|-------------------------------------|-------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | | Model
Size | Sample
Budget | IMO | AIME | AMC | Sum | Algebra | Number
Theory | Sum | Algebra | Number
Theory | Induction | Sum | | Number of Problems | | | 20 | 15 | 45 | 80 | 70 | 60 | 130 | 18 | 8 | 8 | 34 | | Prover Agent (Ours) (Direct proving w/o iterative refinement) (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final proof synthesis w/ lemma) | | 1
100
400
2000 | 40.0
 70.0
 80.0
 80.0 | 53.3
80.0
80.0
80.0 | 62.2
82.2
88.9
91.1 | 55.0
78.8
85.0
86.3 | 71.4
82.9
84.3
85.7 | 60.0
88.3
91.7
91.7 | 66.2
85.4
87.7
88.5 | 55.6
66.7
66.7
72.2 | 75.0
75.0
75.0
87.5 | 50.0
62.5
62.5
75.0 | 58.8
67.6
67.6
76.5 | | DeepSeek-Prover-V2 (Ren et al., 2025) | 671B | 8192 | 50.0 | 93.3 | 77.8 | 73.8 | 100.0 | 96.7 | 98.5 | 83.3 | 87.5 | 100.0 | 88.2 | | | <u> </u> | _ | | | | | | | | | | | | full plan upfront ▶ Show strong performance on Olympiad-level problems Lemmas - Suggest that coordination with informal reasoning may be the key - Olympiad-level problems require a high degree of mathematical reasoning - ► Consistent gap in MATH and Custom - Suggests that model size and sample budget may play a more significant role here ▶ Generated lemmas: Prover model also possesses a certain level of mathematical reasoning ability # ♦ Comparison of Formal Theorem-Proving Performance ♦ — Prover System Method Model Sample MiniF2F | Prover System | Method | Model
Size | Sample
Budget | miniF2F
test | | |--|---|----------------------|--|---|--| | Large Language Models | | | | | | | Kimina-Prover-Preview (Wang et al., 2025) | Whole-proof | 72B | 1
32
1024
8192 | 52.9%
68.9%
77.9%
80.7% | | | DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025) | Whole-proof | 671B | 1
32
1024
8192 | 59.5%
73.8%
76.7%
78.3% | | | DeepSeek-Prover-V2 (CoT) (Ren et al., 2025) | Whole-proof | 671B | 1
32
1024
8192 | 61.9%
82.4%
86.6%
88.9% | | | Small Language Models | | | | | | | DeepSeek-Prover-V1.5-RL $+$ RMaxTS (Xin et al., 2025a
InternLM2.5-StepProver $+$ BFS $+$ CG (Wu et al., 2024)
HunyuanProver v16 $+$ BFS $+$ DC (Li et al., 2025)
BFS-Prover (Xin et al., 2025b) | , | 7B
7B
7B
7B | $32 \times 16 \times 400$
$256 \times 32 \times 600$
$600 \times 8 \times 400$
$2048 \times 2 \times 600$ | 63.5%
65.9%
68.4%
70.8% | | | Leanabell-Prover-GD-RL (Zhang et al., 2025)
Goedel-Prover-SFT (Lin et al., 2025)
STP (Dong & Ma, 2025) | Whole-proof
Whole-proof
Whole-proof | 7B
7B
7B | 128
25600
25600 | 61.1%
64.7%
67.6% | | | Kimina-Prover-Preview-Distill (Wang et al., 2025) | Whole-proof | 7B | 1
32
1024 | 52.5%
63.1%
70.8% | | | DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025) | Whole-proof | 7B | 1
32
1024
8192 | 55.5%
68.0%
73.2%
75.0% | | | DeepSeek-Prover-V2 (CoT) (Ren et al., 2025) | Whole-proof | 7B | 1
32
1024
8192 | 58.6%
75.6%
79.9%
82.0% | | | Prover Agent (Ours) (Direct proving w/o iterative refinement (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final proof synthesis w/ lemma) | t) Agent | 8B | 1
100
400
2000 | 61.5%
80.7%
84.0%
86.1% | | - ✓ State-of-the-art performance among methods using SLMs - ✓ High success rate under low sample budget - ✓ Better performance than prior work through coordination #### ♦ Case Study: Success with Lemma-Guided Proofs ♦ ▶ Problem: theorem induction_nfactltnexpnm1ngt3 $(n : \mathbb{N})$ $(h_0 : 3 \le n) :$ $(n)! < n^n(n-1) := by sorry$ - ► Reasoning trace w/ lemmas: - \checkmark Consider the specific cases for n=3,4,5 - Clearly identify the use of mathematical induction - Employ proof techniques used in the lemmas - Reasoning trace w/o lemmas:XProof strategy is unclear - XThe details cannot be worked out sufficiently The full reasoning trace can be found in the appendix of our paper. #### 1 theorem base_case_3 : $(3 : \mathbb{N})! < 3^{\circ}(3 - 1) := by$ have $h_{main} : (3 : \mathbb{N})! < 3^{(3 - 1)} := by$ -- Calculate the factorial and the power step-by-step norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc] -- Use 'decide' to confirm the inequality <;> decide exact h_main theorem exponent_inequality $\{n : \mathbb{N}\}\ (hn : 2 \le n) :$ $n^{(n-1)} < (n+1)^{(n-1)} := by$ have $h_{main} : n^{(n-1)} < (n+1)^{(n-1)} := by$ have $h_0 : n - 1 + 1 = n := by$ have h_1 : $n \ge 2$: by omega have h_2 : $n - 1 \ge 1$:= by omega have h_3 : n < n + 1 := by omega-- Use the fact that if a < b and n > 0, then a^n < $n^{(n-1)} < (n+1)^{(n-1)} := by$ -- Apply the lemma that if a < b and n > 0, then exact Nat.pow_lt_pow_of_lt_left h₃ (by omega) $_{-}$ = $(n + 1)^{n} (n - 1) := by rfl$ exact h_main