

Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Kaito Baba¹, Chaoran Liu², Shuhei Kurita^{3 2}, Akiyoshi Sannai^{4 5 6 2 7}

¹The University of Tokyo, Tokyo, Japan ²Research and Development Center for Large Language Models, National Institute of Informatics, Tokyo, Japan ³National Institute of Informatics, Tokyo, Japan ⁴Kyoto University, Kyoto, Japan ⁵Shiga University, Shiga, Japan ⁶RIKEN Center for Advanced General Intelligence for Science Program, Kobe, Japan ⁷National Institute of Science Technology Policy (NISTEP), Tokyo, Japan

Our paper

Motivation

- ► Large language models (LLMs):
- ✓ Capable of powerful reasoning and generation
- X Prone to errors and hallucinations
- ► Formal proof assistants (e.g., Lean):
- Verify mathematical correctness
- X Not generative; requires painstaking meticulous detail
- → LLM-based formal proving is gaining attention
- XYet, a large gap remains between informal reasoning and formal proving

Our Goal: Bridge this gap

Our Contributions

- Coordination of informal and formal reasoning with Lean feedback
- ► Auxiliary lemma generation for strategy discovery
- Helps discover strategies even when the solution path is not apparent at first
- ➤ State-of-the-art theorem-proving performance among methods using small language models
- ▶ Efficiency in inference-time cost
- Much smaller sample budget than prior work

Comparison of theorem-proving performance on the MiniF2F benchmark

Prover Agent

Formal Proof

Three Key Components of Prover Agent <</p>

- Lemma Generation via Informal Reasoning
- Generate auxiliary lemmas
- Specific cases
- Potentially useful intermediate facts
- Not limited to subgoals of predefined proof sketch
- Key difference from prior approachs
- e.g. Problem: Show that $n^2 + an$ is even o Consider $n^2 + n$ or $n^2 + 3n$ ($n \in \mathbb{N}$, a: even)
- → Help discover overall proof strategy
- Mirrors how human mathematicians typically work
- 2 Formal Proof Construction Guided by Informal Reasoning and Iterative Feedback
- Leverage the stronger mathematical ability of the informal LLM
- Construct a formal proof using an informal proof as a guide
- Iteratively refine the proof based on Lean feedback
- Can be seen as self-correction through in-context learning
- Akin to how humans improve their understanding based on feedback
- 3 Final Proof Synthesis Guided by Verified Lemmas and Iterative Feedback
- Consider overall proof using the lemmasUse only the verified lemmas
- ► Allows bottom-up strategy construction
- even when the full plan isn't initially clear

 O Prior work: top-down approach requiring the
- ► Iteratively refine the proof based on Lean feedback

Experiments

♦ Experimental Setup ♦

- o Informal LLM: DeepSeek-R1-0528-Qwen3-8B
- Formal prover model: DeepSeek-Prover-V2-7B
- O AutoFormalizer: Kimina-Autoformalizer-7B
- Performance on Olympiad-Level Problems ♦

				Olyn	ıpıad			MAIF	1		Cus	tom	
	Model Size	Sample Budget	IMO	AIME	AMC	Sum	Algebra	Number Theory	Sum	Algebra	Number Theory	Induction	Sum
Number of Problems			20	15	45	80	70	60	130	18	8	8	34
Prover Agent (Ours) (Direct proving w/o iterative refinement) (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final proof synthesis w/ lemma)		1 100 400 2000	40.0 70.0 80.0 80.0	53.3 80.0 80.0 80.0	62.2 82.2 88.9 91.1	55.0 78.8 85.0 86.3	71.4 82.9 84.3 85.7	60.0 88.3 91.7 91.7	66.2 85.4 87.7 88.5	55.6 66.7 66.7 72.2	75.0 75.0 75.0 87.5	50.0 62.5 62.5 75.0	58.8 67.6 67.6 76.5
DeepSeek-Prover-V2 (Ren et al., 2025)	671B	8192	50.0	93.3	77.8	73.8	100.0	96.7	98.5	83.3	87.5	100.0	88.2
	<u> </u>	_											

full plan upfront

▶ Show strong performance on Olympiad-level problems

Lemmas

- Suggest that coordination with informal reasoning may be the key
 - Olympiad-level problems require a high degree of mathematical reasoning
- ► Consistent gap in MATH and Custom
- Suggests that model size and sample budget may play a more significant role here

▶ Generated lemmas:

Prover model also possesses a certain level of mathematical reasoning ability

♦ Comparison of Formal Theorem-Proving Performance ♦ — Prover System Method Model Sample MiniF2F

Prover System	Method	Model Size	Sample Budget	miniF2F test	
Large Language Models					
Kimina-Prover-Preview (Wang et al., 2025)	Whole-proof	72B	1 32 1024 8192	52.9% 68.9% 77.9% 80.7%	
DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025)	Whole-proof	671B	1 32 1024 8192	59.5% 73.8% 76.7% 78.3%	
DeepSeek-Prover-V2 (CoT) (Ren et al., 2025)	Whole-proof	671B	1 32 1024 8192	61.9% 82.4% 86.6% 88.9%	
Small Language Models					
DeepSeek-Prover-V1.5-RL $+$ RMaxTS (Xin et al., 2025a InternLM2.5-StepProver $+$ BFS $+$ CG (Wu et al., 2024) HunyuanProver v16 $+$ BFS $+$ DC (Li et al., 2025) BFS-Prover (Xin et al., 2025b)	,	7B 7B 7B 7B	$32 \times 16 \times 400$ $256 \times 32 \times 600$ $600 \times 8 \times 400$ $2048 \times 2 \times 600$	63.5% 65.9% 68.4% 70.8%	
Leanabell-Prover-GD-RL (Zhang et al., 2025) Goedel-Prover-SFT (Lin et al., 2025) STP (Dong & Ma, 2025)	Whole-proof Whole-proof Whole-proof	7B 7B 7B	128 25600 25600	61.1% 64.7% 67.6%	
Kimina-Prover-Preview-Distill (Wang et al., 2025)	Whole-proof	7B	1 32 1024	52.5% 63.1% 70.8%	
DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025)	Whole-proof	7B	1 32 1024 8192	55.5% 68.0% 73.2% 75.0%	
DeepSeek-Prover-V2 (CoT) (Ren et al., 2025)	Whole-proof	7B	1 32 1024 8192	58.6% 75.6% 79.9% 82.0%	
Prover Agent (Ours) (Direct proving w/o iterative refinement (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final proof synthesis w/ lemma)	t) Agent	8B	1 100 400 2000	61.5% 80.7% 84.0% 86.1%	

- ✓ State-of-the-art performance among methods using SLMs
- ✓ High success rate under low sample budget
- ✓ Better performance than prior work through coordination

♦ Case Study: Success with Lemma-Guided Proofs ♦

▶ Problem:

theorem induction_nfactltnexpnm1ngt3 $(n : \mathbb{N})$ $(h_0 : 3 \le n) :$ $(n)! < n^n(n-1) := by sorry$

- ► Reasoning trace w/ lemmas:
- \checkmark Consider the specific cases for n=3,4,5
- Clearly identify the use of mathematical induction
- Employ proof techniques used in the lemmas
- Reasoning trace w/o lemmas:XProof strategy is unclear
- XThe details cannot be worked out sufficiently

The full reasoning trace can be found in the appendix of our paper.

1 theorem base_case_3 : $(3 : \mathbb{N})! < 3^{\circ}(3 - 1) := by$ have $h_{main} : (3 : \mathbb{N})! < 3^{(3 - 1)} := by$ -- Calculate the factorial and the power step-by-step norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc] -- Use 'decide' to confirm the inequality <;> decide exact h_main theorem exponent_inequality $\{n : \mathbb{N}\}\ (hn : 2 \le n) :$ $n^{(n-1)} < (n+1)^{(n-1)} := by$ have $h_{main} : n^{(n-1)} < (n+1)^{(n-1)} := by$ have $h_0 : n - 1 + 1 = n := by$ have h_1 : $n \ge 2$: by omega have h_2 : $n - 1 \ge 1$:= by omega have h_3 : n < n + 1 := by omega-- Use the fact that if a < b and n > 0, then a^n < $n^{(n-1)} < (n+1)^{(n-1)} := by$ -- Apply the lemma that if a < b and n > 0, then exact Nat.pow_lt_pow_of_lt_left h₃ (by omega) $_{-}$ = $(n + 1)^{n} (n - 1) := by rfl$ exact h_main